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The effect of angle of attack on the acoustic receptivity of the boundary layer over
two-dimensional parabolic bodies is investigated using a spatial solution of the
Navier–Stokes equations. The free stream is decomposed into a uniform flow with a
superposed periodic velocity fluctuation of small amplitude. The method follows that
of Haddad & Corke (1998) and Erturk & Corke (2001) in which the solution for the
basic flow and linearized perturbation flow are solved separately. Different angles of
incidence of the body are investigated for three leading-edge radii Reynolds numbers.
For each, the angle of attack ranges from 0◦ to past the angle where the mean flow
separates. The results then document the effect of the angle of incidence on the
leading-edge receptivity coefficient (KLE), and in the case of the mean flow separation,
on the amplitude of Tollmien–Schlichting (T-S) waves at the linear stability Branch II
location (KII ). For angles of attack before separation, we found that the leading-edge
receptivity coefficient, KLE, increased with angle of incidence which correlated with
an increase in the pressure gradient at the physical leading edge. When a separation
zone formed at larger angles of incidence, it became a second site of receptivity with a
receptivity coefficient that exceeded that of the leading edge. This resulted in dramatic
growth of the T-S waves with Branch II amplitudes more than 100 times larger than
those at angles just before separation, and 1000 times more than those at 0◦ angle of
attack.

1. Introduction
Transition from laminar flow to turbulent flow is still one of the most fundamental

and important problems in fluid mechanics. In a boundary layer, it has a key tech-
nological impact because it ultimately governs quantities such as skin friction and heat
transfer. The transition process begins when disturbances enter from the free stream
and excite instability modes within the boundary layer. At this stage, the process is
referred to as ‘receptivity’. For a Blasius flow, these instability modes are the Tollmien–
Schlichting (T-S) modes provided the free-stream turbulence level is sufficiently
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low. In predicting the transition location, it is essential to know the initial amplitudes
of the T-S modes at the leading edge. The receptivity coefficient relates the initial T-S
amplitude to that of the free-stream disturbance.

Receptivity phenomena can be classified into two groups: vortical receptivity and
acoustic receptivity. Physically, they correspond to vorticity fluctuation and sound
waves (of infinite wavelength), respectively. With vortical receptivity, vorticity fluctu-
ation is convected by the free stream and is often referred to as a convecting gust.
With acoustic receptivity, boundary-layer instability is excited by free-stream sound.
The length and time scales of the disturbance of each group do not match with those
of T-S waves simultaneously. Thus, in order for them to excite any T-S wave, a scale-
conversion mechanism is required.

Generally, receptivity comes about through non-parallel mean flow effects that may
arise either in the leading-edge region, or in some localized region due to a step
or joint (Goldstein & Hultgren 1989). Goldstein (1983, 1985) developed the earliest
asymptotic analysis for localized receptivity on a semi-infinite zero-thickness plate.
There are two general classes of receptivity regions recognized by Goldstein: (i) the
leading-edge regions where the boundary layer is thin and growing rapidly; and (ii)
regions further downstream where the boundary layer is forced to make a rapid adjust-
ment such as when there are ‘joints or bumps’.

Historically, two basic body shapes have been used to study receptivity. Murdock
(1980), Haddad & Corke (1998), Erturk & Corke (2001) and Hammerton & Kerschen
(1992, 1996) considered parabolic bodies. In this case the only site of receptivity was
at the leading edge, and the pressure gradient is everywhere favourable. In the
first two references, the receptivity coefficient was determined by numerically solving
the unsteady Navier–Stokes (N-S) equations. Hammerton & Kerschen (1992, 1996)
determined it using asymptotic methods.

The other shape which has been frequently used is an elliptic leading edge on a finite-
thickness flat plate. This shape has more practical relevance in wind-tunnel experi-
ments, and has been the subject of physical experiments by Shapiro (1977), Saric &
Rasmussen (1992), Saric, Wei & Rasmussen (1994) and Saric & White (1998). The re-
sults of these motivated the N-S calculations of Lin, Reed & Saric (1990) and
Fucciarelli (1997). The elliptic leading edge has an adverse pressure gradient, and two
sites of receptivity, one at the leading edge and the other at the point where it joins the
flat plate. To minimize the effect of the joint, Saric et al. (1994) used a ‘modified super
ellipse’ (MSE). This used a variable exponent for the ellipse long axis to give zero
curvature at the joint location. Wanderley & Corke (2001) performed N-S calculations
for both elliptic and modified-ellipse leading edges of flat plates to simulate the cond-
itions of Saric & White (1998). These exhibited the same frequency selection mech-
anism as observed in the experiments whereby the Branch I T-S amplitudes increased
and decreased as the waves originating at the leading edge were 0◦ or 180◦ phase shif-
ted to those originating at the downstream joint.

The analysis of Hammerton & Kerschen (1992, 1996, 1997), and the N-S simulations
of Haddad & Corke (1998) and Erturk & Corke (2001) all found that the leading-
edge receptivity coefficient increased as the leading-edge radius decreased, with the
maximum receptivity occurring for an infinitely thin flat plate. When the receptivity
values of Saric et al. (1994) and Fucciarelli (1997) were extrapolated upstream from
Branch I to the leading edge, good quantitative agreement was found with the values
of Haddad & Corke (1998) and Erturk & Corke (2001).

All of the previous literature on the flow over parabolic bodies has been at zero
angle of incidence. In the last part of Haddad & Corke (1998), a preliminary look
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at the effect of small angles of attack on the leading-edge receptivity coefficient was
taken. These angles were well below (� 7◦) the point where flow separation would
occur. Within this limited range, the leading-edge receptivity coefficient increased by
as much as 65 % compared to zero angle of attack. The implications that this had on
the T-S amplitudes at Branch II were not investigated.

Since all practical aerodynamic bodies are aerodynamically loaded, there is a natural
interest in the full effect this has on boundary-layer instabilities. We expect this to be
manifest through changes in the leading-edge receptivity coefficient, and in the linear
stability growth rates that reflect changes in the mean flow resulting from favourable
and unfavourable pressure gradients. An added effect comes when angles of attack are
large enough to cause the flow to separate. This is expected to add another acoustic
receptivity site similar to a surface bump or joint. Anecdotally, experimentalists stud-
ying boundary-layer instabilities on flat plates avoid leading-edge separation in order
to maintain a suitable extent of laminar flow. The effect of even a small separation
bubble is immediately detected through a dramatic decrease in the transition Reynolds
number. Although this is commonly observed, to date there is no quantitative infor-
mation about the acoustic receptivity of a closed separation bubble, and the degree to
which it depends on other factors such as the wall geometry at or around the separ-
ation zone.

As part of a continued effort by the authors toward understanding the acoustic
receptivity of the flow over parabolic bodies (e.g. Haddad & Corke 1998; Erturk &
Corke 2001), the objective of this study is to investigate the effect of aerodynamic
loading produced by orienting the body at a mean angle of attack. With this, the
focus will be on both the leading-edge receptivity, and the receptivity that occurs
owing to flow separations at large angles of attack. This will be investigated using
the successful spatial formulation first introduced and applied to parabolic bodies by
Haddad & Corke (1998) and Erturk & Corke (2001), as well as by Wanderley &
Corke (2001) on elliptic leading edges of flat plates.

2. Physical problem
Figure 1 shows a diagram of the parabolic body set at a mean angle of attack with

respect to a uniform flow. The equation of the surface of the parabolic body is given
by

x(y) =
1

2R
(y2 − R2), (1)

where x and y are the Cartesian coordinates, and R is the nose radius of curvature
of the parabola.

2.1. Governing equations

In this study, the full N-S equations are considered. For a two-dimensional laminar
incompressible flow, the N-S equations in streamfunction (ψ) and vorticity (ω)
variables in the Cartesian coordinates are written in the form

∂2ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 = −ω∗, (2)

∂ω∗

∂t∗ +
∂ψ∗

∂y∗
∂ω∗

∂x∗ − ∂ψ∗

∂x∗
∂ω∗

∂y∗ = ν

(
∂2ω∗

∂x∗2 +
∂2ω∗

∂y∗2

)
, (3)
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Figure 1. General schematic diagram of parabolic body at an angle of attack (α) in a
uniform stream, and acoustic disturbance at an incident angle (αs) with respect to body
centreline.

where the superscript ∗ denotes dimensional quantities. To non-dimensionalize the
above equations, the free-stream velocity (U∞) and viscosity (ν) are used such that

x =
x∗

ν/U∞
, y =

y∗

ν/U∞
, t =

t∗

ν/U 2
∞

, ω =
ω∗

U 2
∞/ν

, ψ = ψ∗/ν. (4)

In addition, the geometry of the body suggests that the problem be formulated in
terms of parabolic coordinates. Among the advantages of using parabolic coordinates
is that it allowed us to reduce any spurious receptivity that might have been produced
by non-uniformities in the body contour or the numerical grid. The dimensionless
parabolic coordinates (ξ, η) are related to the dimensionless Cartesian coordinates
(x, y) by the following complex equation

x + iy = 1
2
(ξ + iη)2 (5)

or

x = 1
2
(ξ 2 − η2), y = ξη. (6)

Based on (4) and (6), the governing equations (2) and (3) can be non-dimensionalized
and rewritten in parabolic coordinates as

∂2ψ

∂ξ 2
+

∂2ψ

∂η2
= −(ξ 2 + η2) ω, (7)

−(ξ 2 + η2)
∂ω

∂t
+

∂2ω

∂ξ 2
+

∂2ω

∂η2
+

∂ψ

∂ξ

∂ω

∂η
− ∂ψ

∂η

∂ω

∂ξ
= 0. (8)

This is the final form of the governing equations. In a previous work of Haddad &
Corke (1998), the authors adopted the transformation introduced by Davis (1972) in
order to remove the singularity at the leading edge in the limiting case when R = 0
(i.e. infinitesimally thin flat plate). Since the present study is not concerned with zero
thickness bodies, this transformation was not used, instead the above equations were
solved directly for ψ and ω for cases where R > 0.
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2.2. Boundary conditions

First, it should be pointed out that based on (1) and (6), the body surface is located
at ηw = R1/2. Also, since a viscous length scale is used in the current study, the
nose radius of curvature, R, becomes Reynolds-number based on the nose radius of
curvature, Re, when non-dimensionalized.

2.2.1. Wall boundary conditions

At the wall, the no-slip, no-penetration conditions are satisfied by

ψ
(
ξ, Re1/2

)
= constant = 0,

∂ψ

∂η

(
ξ, Re1/2

)
= 0. (9)

Also, to generate a condition on the vorticity at the wall, the streamfunction equation
(7) is applied at the wall where ψξ =ψξξ = ψη = 0, giving

ω
(
ξ, Re1/2

)
=

(
−1

ξ 2 + η2

)
ψηη. (10)

2.2.2. Free-stream boundary conditions

The magnitude of the free-stream velocity is set equal to unity since the free-stream
velocity is used as a reference velocity scale in (4), that is

|U∞| = 1. (11)

The velocity components of the free stream with a non-zero angle of attack are then

u = cos(α), v = sin(α), (12)

where u and v are the respective velocity components in x-and y-directions, and α is
the angle of attack. Recall that the streamfunction is defined as

∂ψ

∂y
= u,

∂ψ

∂x
= −v. (13)

The value of the streamfunction in the free stream is therefore defined as

ψ∞ = y cos(α) − x sin(α). (14)

In parabolic coordinates, the free-stream boundary condition for the streamfunction
is then

∂ψ

∂η
→ ξ cos(α) + η sin(α) as η → ∞. (15)

For the vorticity condition, away from the wall, the potential flow has zero vorticity.
Therefore

ω → 0 as η → ∞. (16)

3. Basic flow and perturbation flow equations
A spatial approach is used to formulate the perturbation equations from which we

will derive the acoustic receptivity coefficients. The advantage of this approach is that
it allows variables with different orders of magnitude to be calculated separately to
greater accuracy.

The acoustic wave in the free stream is modelled as a periodic small-amplitude
perturbation superposed on the uniform free-stream flow, namely

ψ = ψ∞ + εeiσ t ψ̃∞, (17)
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where σ is the temporal frequency of oscillation, and ε is the amplitude of oscillation,
which is sufficiently small for linearization.

Since the mean flow and acoustic wave can be at different incidence angles with
respect to the body, as illustrated in figure 1,

ψ = (ξ cos(α) + η sin(α)) + εeiσ t (ξ cos(αs) + η sin(αs)), (18)

where α is the angle of attack of the parabolic body with respect to the free-stream
streamline, and αs is the angle of incidence of acoustic (sound) waves with respect
to the body centreline. Based on this, we decomposed the unsteady flow field into a
steady basic state plus an unsteady perturbation (in normal mode form), given as

ψ(ξ, η, t) = Ψ (ξ, η) + εeiσ t ψ̃(ξ, η), (19)

ω(ξ, η, t) = Ω(ξ, η) + εeiσ t ω̃(ξ, η). (20)

Substituting these back into the governing equations and boundary conditions, and
equating terms of equal powers of ε leads to the governing equations for the basic
and perturbation flow fields.

The basic flow is governed by the following set of equations (zero-order terms in ε)

∂2Ψ

∂ξ 2
+

∂2Ψ

∂η2
= −(ξ 2 + η2)Ω, (21)

∂2Ω

∂ξ 2
+

∂2Ω

∂η2
+

∂Ψ

∂ξ

∂Ω

∂η
− ∂Ψ

∂η

∂Ω

∂ξ
= 0, (22)

with the boundary conditions

Ψ = 0,
∂Ψ

∂η
= 0, Ω =

(
−1

ξ 2 + η2

)
∂2Ψ

∂η2
at η = Re1/2, (23)

∂Ψ

∂η
→ ξ cos(α) + η sin(α), Ω → 0 as η → ∞. (24)

The perturbation flow, after linearizing in ε, is governed by the following set of
equations (first-order terms in ε)

∂2ψ̃

∂ξ 2
+

∂2ψ̃

∂η2
= −(ξ 2 + η2)ω̃, (25)

−iσ (ξ 2 + η2)ω̃ +
∂2ω̃

∂ξ 2
+

∂2ω̃

∂η2
+

∂Ψ

∂ξ

∂ω̃

∂η
+

∂Ω

∂η

∂ψ̃

∂ξ
− ∂Ψ

∂η

∂ω̃

∂ξ
− ∂Ω

∂ξ

∂ψ̃

∂η
= 0, (26)

with the boundary conditions

ψ̃ = 0,
∂ψ̃

∂η
= 0, ω̃ =

(
−1

ξ 2 + η2

)
∂2ψ̃

∂η2
at η = Re1/2, (27)

∂ψ̃

∂η
→ ξ cos(αs) + η sin(αs), ω̃ → 0 as η → ∞. (28)

By inspecting the above two systems of equations governing the basic flow and
the perturbation flow, respectively, we can see that the equations for the basic
flow are non-linear, and therefore require an iterative numerical method for their
solution. Also, the basic flow equations are real and therefore have a real solution.
On the other hand, the equations for the perturbation flow are linear, and therefore
can be solved numerically with a direct linear solver. The perturbation equations are,
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however, complex, and have a complex solution. Furthermore, the temporal frequency
σ appears explicitly in the equations for the perturbation flow, thus the solution is
expected to be frequency dependent.

Our interest is in the streamwise variation of the amplitude of the perturbation that
couples with the T-S waves of the same frequency. By using this spatial formulation,
the basic flow and perturbation flow can be solved separately to the same order of
accuracy. This approach allowed us to perform more precise numerical calculations
on the perturbation values, and minimize any numerical truncation errors.

4. Grid generation
The contour of the body surface is defined by the line ηw = Re1/2. The free stream

is also defined by the line η = ηmax. The free stream is set to be at a distance from
the wall that is at least ten times the estimated maximum Blasius boundary-layer
thickness on a flat plate of the same axial length as the parabolic body and at zero
angle of attack. Thus, in the wall normal direction, η varies between the values

Re1/2 � η � Re1/2 + 35. (29)

We used 36 grid points in the computational domain in the η-direction, between the
body surface boundary and the free-stream boundary.

On the surface of the body, the leading edge is located at ξ = 0. The out-flow
boundaries on the lower and upper sides of the body are located at ξ = −ξmax

and ξ = +ξmax. The out-flow boundary is set far away from the leading edge at
xmax =1.5 × 106. We have used 2002 grid points in the computational domain in
the ξ -direction between ξ = −ξmax and ξ = +ξmax. This guaranteed a minimum of 10
points per T-S wavelength.

In order to capture the physical phenomenon more accurately, more grid points
were located near the wall in the η-direction, and near the leading edge in the
ξ -direction. This was done using Robert’s stretching transformation of the original
uniform grid (Anderson, Tannehill & Pletcher). The transformation used is given by

ŷ = h
(β + 1) − (β − 1)[(β + 1)/(β − 1)]1−ȳ

[(β + 1)/(β − 1)]1−ȳ + 1
, (30)

where, in general, ȳ represents the original uniformly spaced grid points and ŷ

are the stretched grid points and β is the stretching parameter. In the present study,
β = 1.25 in the ξ -direction, and β = 1.005 in the η-direction since these values provided
sufficiently smooth and accurate results.

The geometry we are dealing with is a semi-infinite body. Since the numerical
calculations cover a finite domain, the buffer domain technique used by Haddad &
Corke (1998) and Erturk & Corke (2001) was used to provide the outflow boundary
condition. The approach is to gradually kill the elliptic (∂2/∂ξ 2) terms in the governing
equations in a buffer zone at the downstream end of the computational domain. To
accomplish this, these elliptic terms were multiplied by a weighting factor ŝ. At the
beginning of the buffer zone, ŝ =1. At the end of the buffer zone, ŝ = 0. In between,
ŝ changes according to

ŝ(i) =
tanh(4) + tanh(arg)

2 tanh(4)
, (31)
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where

arg = 4

(
1 − 2(i − ibuf)

(imax − ibuf)

)
, (32)

and i is the numerical streamwise index, imax is the numerical index of the last grid
point in the streamwise direction, and ibuf is the index (i) of the first grid point at the
beginning of the buffer zone. The length of the buffer zone used in this study was eq-
uivalent to approximately five T-S wavelengths, which was well beyond the recomm-
ended minimum of three used in the previous study by Haddad & Corke (1998).

5. Numerical method
For the solution of the nonlinear steady basic flow equations, we developed an it-

erative numerical method. The basic flow variables are improved through a pseudo-
time marching until convergence is achieved. More details on the numerical method
can be found in Erturk (1999). For the solution of the linear perturbation equations,
we used an efficient direct linear solver (LINPACK subroutines). The solution method-
ology of the problem is to first solve the basic flow equations for a given angle
of incidence, α. Using the basic flow solution, the coefficients in the perturbation
equations were next calculated. With specified values of the frequency, σ , and angle
of incidence of the acoustic waves, αs , the perturbation equations are then solved.

In the results presented here, the angle of incidence of the acoustic waves, αs , was
always equal to that of the body, α. Erturk & Corke (2001) have examined the effect
of different angles of incidence of sound waves (αs �= α) on the non-aerodynamically
loaded (α = 0) parabolic body.

For the numerical solution of the perturbation equations, we used the same numer-
ical grid and buffer zone that was used for the solution of the basic flow equations. We
note that all of the results presented here are grid independent.

6. Results and discussion
Extensive numerical tests have been carried out to study the effect of the numerical

grid size, and outflow and free-stream boundary locations. In particular, we focused
on the mean flow, where the use of the parabolic body at zero angle of attack has
the advantage that the mean flow becomes Blasius downstream of the leading edge.
Comparisons between the mean wall shear stress and vorticity in a related study
(Erturk, Haddad & Corke 2004), provided a check on the accuracy of the solutions
for the range of nose radii used here. The results of these numerical checks are
identical to those previously presented by Haddad & Corke (1998) and Erturk &
Corke (2001).

6.1. Sample mean flow results

Three nose Reynolds numbers of 10, 50 and 100 were examined. The mean flow for a
range of angles of incidence was computed. The angles ranged from zero, to a value
that was beyond where the flow would separate. This separation angle increased as
the nose Reynolds number increased. The range of angles, and the angle where the
flow first separates are summarized in table 1.

The overall effect of angle of incidence on the mean flow over the parabolic body
is best shown through the velocity streamlines. These are presented in figure 2 for
Re = 10 at four different angles of 0◦, 6◦, 13◦ and 14◦. At 0◦, the stagnation streamline
perfectly aligns with the body centreline axis. At the next higher angle of incidence
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Re α range (deg.) αsep

10 0–14 12
50 0–18 � 17

100 0–21 � 20

Table 1. Nose Reynolds numbers and angles of incidence examined.
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Figure 2. Velocity streamlines for the flow over the parabolic body at four different angles
of incidence for Re = 10. (a) α = 0◦, (b) 6◦, (c) 13◦, (d) 14◦.

presented in the figure, 6◦, the stagnation streamline is curved and impacts the body
below the physical leading edge. As will be shown, this results in a strong pressure
gradient at the leading edge.

At this Reynolds number, the mean flow first separates at an angle of 12◦. The
separation ‘bubble’ is evident in the streamline pattern near the body surface at the
higher angles of incidence of 13◦ and 14◦ shown in figure 2. The effect that the
separation ‘bubble’ has on the acoustic receptivity and growth of the T-S instability
downstream is a primary focus of this work.

A quantitative measure of the locations of the mean flow separation and reattach-
ment comes from viewing the streamwise distribution of the surface friction coefficient,
Cf = τ ∗

w/ρU 2
∞, where τ ∗

w = µ(∂u∗/∂y∗)|w . These are shown in figure 3 for the three nose
Reynolds numbers over the full range of angles of incidence of the body. The value
Cf = 0 is shown as the horizontal dotted line. At any nose Reynolds number, the
upstream location where Cf crosses through zero to become negative, marks the
separation location. The next downstream position where Cf crosses zero to become
positive, indicates where the mean flow reattaches.

Focusing on Re = 10 in figure 3, the flow first separates at 12◦. This occurs at
ξ = 20. The length of the separation bubble at this angle is fairly small, extending to
approximately ξ = 30. As the angle of attack increases, the separation point moves
further upstream, closer to the leading edge, and the length of the separation zone
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Figure 3. Surface friction coefficient distributions along parabolic body for different angles
of attack at (a) Re = 10, (b) 50 and (c) 100.

increases almost linearly with angle of attack. At Re = 50, the separation bubble first
forms a little beyond an angle of incidence of 17◦. At Re = 100, the separation angle
increases to just past 20◦.
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In all these cases, the location and extent of the separation bubble is relatively
close to the leading edge, although it never extends to the leading edge (ξ = 0). As
a reference, it corresponds to less than 1.5 % of the computational domain. More
importantly for our objective, it is far upstream of the linear stability Branch I, and
the length of the separation bubble corresponds to a fraction of a T-S wavelength at
the frequency of interest.

6.2. Perturbation flow results

These results deal with the solution of the perturbation flow that is governed by
(25) to (28). With this we are examining the response of the unsteady flow to an
infinitesimal (linear) periodic disturbance that is superimposed on the uniform mean
flow as given by (17). We non-dimensionalize the disturbance frequency such that σ

is defined as

σ =
2πf ν

U 2
∞

. (33)

The results that follow are for σ = 230 × 10−6. This was chosen to match the
conditions in the computations of Haddad & Corke (1998). This frequency crosses
the upper tip of the neutral curve for the linear growth of disturbances in the boundary
layer. Besides allowing a comparison to the earlier work, the choice of this frequency
offers some other advantages. The first is that at this frequency, the amplification
distance is relatively short so that we could easily reach the location of the second
neutral branch (II) within our computational domain. This allows us to determine
the Branch II receptivity coefficient which will combine the effects of both the leading
edge and separation bubble on the downstream instability growth. Secondly, this
frequency is far from the most amplified value so that we are less likely to violate
the linear assumptions in the anticipated high-instability amplitude levels that will
occur with the separation bubble present. For a physical reference to experiments, for
example in air, with ν = 1.5 × 10−5 m2 s−1 and a free-stream velocity U∞ =6.7 m s−1,
the dimensional frequency is 109.53 Hz.

In terms of the boundary-layer instability, the most appropriate Reynolds number
is based on the surface arclength along the parabolic body, s(x), where

s(x) = 1
2
R

{(
1 +

2x

R

)1/2(
2 +

2x

R

)1/2

+ ln

[(
1 +

2x

R

)1/2

+

(
2 +

2x

R

)1/2]}
. (34)

Since a viscous length scale is used in our non-dimensionalization, s and Res are
identical.

An example of the type of result we obtain for the perturbation flow is shown in
figure 4. This is for Re = 10 and α = 0. It corresponds to the streamwise perturbation
velocity (u) with respect to the Reynolds number (Res) along the body, at a fixed
height above the surface that is close to where the amplitude is a maximum. The
u-axis has been magnified in order to see the instability waves, in the linear amplified
region (7 � Res × 104 � 14). With this, the spatial oscillations are clearly evident
although further analysis is needed to isolate the component of the fluctuations that
is explicitly due to T-S waves.

In presenting the perturbation flow, the contribution of the Stokes wave is always
subtracted from the total perturbation velocity. This involves an independent solution
of the governing equations that have been modified to eliminate the inertia terms.
The equations for the Stokes flow are discretized on the same numerical grid used
for the other calculations. The Stokes flow solution is then subtracted point by point
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Figure 4. Sample streamwise perturbation velocity (u) along the body at a fixed height that
is close to the amplitude maximum; Re = 10, α = 0◦.
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Figure 5. Streamwise (u) perturbation velocity profiles at consecutive downstream locations
with Stokes wave removed; Re = 10, α = 0◦.

from the total perturbation solution. An example of this process can be found in the
papers by both Haddad & Corke (1998) and Erturk & Corke (2001).

Figure 5 shows wall-normal distributions of the streamwise (u) perturbation velocity
(after subtracting the Stokes flow) at consecutive streamwise positions, starting at the
leading edge, for Re = 10 and α =0◦. We note that at the first four positions shown,
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the wall-normal distributions do not resemble a T-S eigenfunction. Near the leading
edge, we suspect the perturbation flow, after subtracting off the Stokes wave, is
made up of a combination of forced (non-Orr–Sommerfeld) modes and T-S modes.
Further downstream of the leading edge, for example at Res =104.2, the wall-normal
streamwise velocity profiles eventually develop a T-S eigenfunction shape. Based on
the lower peak in the wall-normal profile, we observe the amplitude to decrease with
downstream distance. This is expected since all of the locations shown in figure 5 are
well upstream of Branch I, which occurs at Res ≈ 7.0 × 104.

6.2.1. Leading-edge receptivity

Our interest here is in the leading-edge receptivity coefficient for the T-S waves.
In general, we define the receptivity coefficient at any s-location, as the ratio
of the maximum T-S amplitude to that of the free-stream disturbance, namely
Ks = |uT S |/|u∞|. In our formulation, the perturbation amplitude obtained from the
numerical results is u/u∞. Therefore, if the only component of the fluctuations is due
to T-S waves, the amplitude we measure at any s location, such as the profiles in
figure 5, are identical to Ks .

Therefore, the remaining step in obtaining the leading-edge receptivity coefficient
is to extrapolate the value corresponding to T-S waves upstream to the leading edge.
To achieve this, we select the maximum values in the wall normal profiles that have a
T-S eigenfunction shape near the leading edge. An exponential fit is then performed
which is then used to extrapolate to the leading-edge value to determine KLE.

An example of the exponential fit and leading-edge extrapolation is shown in
figure 6 for Re = 10 at α = 0◦ and 6◦. This is plotted on log–linear axes to illustrate
better the exponential decay in u with Res . In both cases, we easily identify an
exponential decay region near the leading edge. When we extrapolate these fits to the
leading edge (ξ = 0) we note that KLE increased with angle of attack.

The process of determining KLE was performed for the three leading-edge Reynolds
numbers at all of the angles of attack, up to where separation occurred. The result
is shown in figure 7. In general, the leading-edge receptivity coefficient increases with
angle of incidence in an approximate linear fashion. In addition, the overall magnitude
and change with angle is largest for the smaller nose radius. The increasing KLE with
decreasing nose radius agrees with the past results of Haddad & Corke (1998) for
zero angle of incidence.

Hammerton & Kerschen (1992) suggest that the appropriate way to normalize the
angle of incidence in the abscissa in figure 7 is by the square-root of the nose radius
(Reynolds number in dimensionless form). The result is shown in figure 8. In this
we observe some degree of collapse of the three sets of results, however, there still
appears to be a systematic difference between the three leading-edge radii at the
smaller angles of incidence.

Overall, the trend of increasing KLE with angle of incidence is consistent with the
asymptotic results of Hammerton & Kerschen (1992). However, they had observed
that with small aerodynamic loading (angles of incidence) there was an initial slight
decrease in the leading-edge receptivity. Our present results, and those of Haddad &
Corke (1998) have not observed this decrease in KLE at small angles.

What is the physical explanation for the increase in the KLE with increased
aerodynamic loading? Could it possibly be due to the movement of the adverse
pressure gradient region towards the region of receptivity (leading edge)? Although
this does happen, the pressure gradient near the leading edge for the parabolic body
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Figure 6. Example of the extrapolated leading-edge receptivity coefficient value found by
fitting spatial exponential decay of peak u fluctuations; Re = 10, (a) α = 0◦ and (b) α =6◦.

for the angles up to flow separation, never became adverse. An example of the
pressure gradient, ∂P/∂ξ , distribution for the body at α = 4◦ and Re = 10, is shown
in figure 9(a). At zero angle of incidence, the stagnation line is at the leading edge
(ξ =0) and ∂P/∂ξ = 0. With α > 0, the stagnation point moves to the lower surface
(negative ξ ), below the leading edge (see figure 2), and a pressure gradient develops
at the leading edge. This gradient is favourable. As the angle of incidence increases,
the pressure gradient at the leading edge continues to increase. This is documented in
figure 9(b). The increase in the pressure gradient at the leading edge continues until
the flow separates, which is at α = 12◦ for Re = 10.

We view the local pressure gradient at the leading edge as an amplifier in the
wavelength conversion of the free-stream acoustic disturbances. As the gradient
increases, we expect a larger response to free-stream fluctuations, which is manifest as
the increase in KLE with angle of incidence in figure 7. We note that in the range of
angles in figure 7 for Re =10, KLE increases approximately linearly, as does ∂P/∂ξ .
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Figure 7. Leading-edge receptivity coefficients for �, Re =10, �, 50 and �, 100 as a function
of the parabolic body angle of attack prior to flow separation.

6.2.2. Branch-II receptivity

One of our principle interests is on the effect of the flow separation, that occurs at
large angles of incidence, on the growth of the T-S waves. Our expectation is that the
separation bubble will provide another receptivity site, similar to the leading edge.

Because the separation bubble is always downstream of the leading edge in our
cases, to observe its effect, we focus on the maximum T-S wave amplitude downstream,
at Branch II. For this, we define a Branch II receptivity coefficient, KII = |uT S |II /|u∞|.
The Branch II receptivity coefficient is the most convenient quantity to relate to ex-
periments because the larger amplitudes make it easier and more accurate to measure.
KII can of course be related to the leading-edge receptivity by determining the
equivalent Branch I amplitude based on linear-theory growth, and extending from
that point to the leading edge through an appropriate theory or N-S calculations for
the leading-edge flow.

One of the difficulties in determining |uT S |II at our disturbance frequency is that
the T-S amplification rate is small. As a result of this, Haddad & Corke (1998)
observed that in the linear amplified region, the amplitude of the discrete T-S mode
was comparable to those of the continuous spectrum of Orr–Sommerfeld modes. The
effect of this was observable as a modulation in the spatial amplitude of the discrete
T-S wave. An example can be seen in the amplitude distribution shown in figure 4.
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Figure 8. Leading-edge receptivity coefficients for �, Re = 10, �, 50 and �, 100 as a function
of the parabolic body angle of attack normalized by the leading-edge Reynolds number.

In particular, it is most evident around Res � 5 × 104. Similar modulations have also
been observed by Murdock (1980), Buter & Reed (1994), and Gatski & Grosch (1987).
The presence of these modes makes it more difficult to determine the true discrete
T-S amplitude distribution.

In order to separate out the contribution of the discrete T-S fluctuations from
the total u-perturbation distributions, such as in figure 4, we followed the approach
previously used by Haddad & Corke (1998). This involved applying a one-dimensional
spatial high-pass filter that was designed to reject fluctuations with wavelengths larger
than the expected discrete T-S wavelength. The assumption in doing this was that
the wavelength of the continuous spectrum modes are two to three times larger than
those of the discrete T-S modes. The high-pass filter cut-off was therefore designed to
suppress energy at wavelengths that were greater than or equal to twice the expected
discrete T-S wavelength. The filter was convolved with the spatial perturbation
distribution. A sample result is presented in figure 10, which compares the original u-
distribution (figure 10a), to that of the filtered distribution (figure 10b). Following the
filtering to remove the contribution of the continuous spectrum modes, the amplified
region between Branch I (Res � 70 000) and Branch II (Res � 140 000) of the discrete
T-S mode is then clearly visible.
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Figure 10. Sample streamwise perturbation velocity (u) along the body at a fixed height that
is close to the amplitude maximum (a) before and (b) after applying high-pass filter to remove
contributions of continuous spectrum modes; Re = 10, α = 0◦.

In order to check further that the mode that remains after filtering is the discrete
T-S mode, we filtered the u-perturbation distributions at all of the computed heights
above the surface of the parabolic body, and measured the maximum u amplitude
at Branch II. These are plotted in figure 11 for Re = 10 and α = 0◦. For reference,
we have also plotted as a solid curve, the T-S eigenfunction from a linear stability
calculation at our frequency and Res location. Overall, the comparison between the
computed amplitudes and linear theory is very good.

We obtain an initial sense of the effect the angle of incidence has on the T-S mode
growth in the amplified region in figure 12. This shows the filtered u-perturbation
distributions at the height where the amplitude is the maximum, at increasing angles
of incidence from 0◦ to 14◦ for Re = 10. The scale on u is the same on all of the
plots in the figure except for having different orders of 10 multipliers. For example,
at α =0◦ the multiplier is 103, whereas at α =14◦ the multiplier is 100. From this it
is evident that the amplitude of the T-S wave is approximately 1000 times larger at
α = 14◦ than at α = 0◦. It is also evident in figure 12 that there was a disproportionate
growth in the T-S amplitude between α = 12◦ and 14◦. The significance of this is that
the separation bubble first forms at α =12◦.

The maximum u-amplitudes at Branch II have been compiled for all three leading-
edge Reynolds numbers, at all of the angles of incidence. These are presented in terms
of the Branch II receptivity coefficient, KII in figure 13. Because of the large dynamic
range of KII in these cases, it is presented on a log axis. The angle of incidence has
not been normalized by Re as was done in figure 8, because the differences due to the
nose Reynolds numbers observed at smaller angles are fairly insignificant compared
to the effects at large angles.

If we first focus on the results in figure 13 for the largest leading-edge Reynolds
number (100), we observe a smooth increase in KII with increasing α. In this case,
the flow first separates at α � 21◦, which is the last point in the set.
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Figure 11. Wall-normal amplitude profile at the location of Branch II after high-pass filtering
to remove long-wavelength fluctuations (square symbols), and comparison to linear theory
discrete T-S eigenfunction (curve); Re = 10, α = 0◦.

The values for the next smallest Reynolds number (50) lie on top of those at
Re =100 for angles up to approximately 15◦. Above this angle, the KII values are
larger than those for Re =100, at the same angles. For Re = 50, the flow first separates
at α � 17◦. Therefore, the more rapid increase in KII compared to Re = 100 appears
to precede this by about 2◦.

Finally at the lowest Reynolds number (10), at the smaller angles to approximately
α = 5◦, the values of KII closely overlies those of the other two Reynolds numbers.
The separation bubble in this case forms at α � 12◦. There appears to be a small
levelling out of the KII values up to α = 10◦, which is then followed by a very rapid
increase in KII that again precedes the mean flow separation angle by approxi-
mately 2◦.

In order to try to explain the behaviour of KII with changing angle of incidence,
we will focus on the Re = 10 case. Prior to any flow separation, the only site of
receptivity to acoustic free-stream disturbances on the body is the leading-edge. The
growth of the T-S waves in the amplified region downstream that is reflected in KII ,
takes its seed from the leading-edge receptivity.

Focusing then on KLE for Re = 10 in figure 7, we observe an almost linear increase
with angle of incidence to approximately α = 6◦. Above this angle, the increase in the
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Figure 12. Filtered streamwise perturbation velocity (u) along the body at a fixed height
that is close to the amplitude maximum at different angles of incidence; Re = 10. Note scale
multiplier is changing to accomodate increasing amplitudes with increasing α.

leading-edge receptivity coefficient with increasing angle decreases. This behaviour
correlates with the pressure gradient, ∂P/∂ξ at the leading edge, that was shown in of
figure 9(b). There, the gradient increases almost linearly up to approximately α = 6◦,
and then changes less until it saturates at α � 12◦ where the flow first separates. As
pointed out earlier, we believe the increase in (∂P/∂ξ )LE is directly linked to the
increase in KLE with increasing angle of incidence.

The smaller increase of KLE with angles of incidence between 7◦ and 10◦ can
therefore explain the small plateau in the KII values in the same range of angles that
was documented in figure 13. What explains the more rapid increase in KII at angles
above these?

The singular event in the mean flow over the body at the higher angles of incidence
� 12◦, is the formation of the separation bubble. Table 2 summarizes the locations
of the separation and reattachment points for Re = 10, as well as the length of the
separation bubble as a percentage of the T-S wavelength. Also included in table 2 are
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α (deg.) (Res)sep (Res)ret %λT S (Res)I (Res)II

12 252 425 4.3 65,091 139,372
13 99 1305 13.1 63,350 137,882
14 68 2595 26.0 52,146 146,530

Table 2. Separation characteristics for Re = 10.

the locations of Branches I and II based on streamwise distributions of the filtered
u-perturbations such as shown in figure 12.

At smaller angles of incidence, below which the mean flow separated, the
disturbances in the boundary layer decayed exponentially from the leading edge
until they reached the Branch I location. Examples of this were shown in figure 6,
and were the basis of the exponential fit and extrapolation used to determine KLE.
This behaviour is however different when the flow separates. To show this, we focus
on α = 14◦ which has the largest separated region.

Figure 14 shows the streamwise development of the maximum u-perturbation taken
from wall-normal distributions like those in figure 5, but at α = 14◦. This maximum is
indicative of the lower peak in the wall-normal T-S eigenfunction, and is therefore a
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Figure 14. Maximum streamwise perturbation amplitude along body Re = 10 and α = 14◦.
Dashed lines mark locations of mean flow separation and reattachment.

measure of the T-S wave amplitude. The two vertical dashed lines in figure 14 denote
the locations of the separation and reattachment points on the body.

As with the lower angle of incidence cases, the maximum u value decreases
downstream of the leading edge with α = 14◦. This continues a short distance into the
separated zone, but in contrast with the lower angle cases, the maximum u value grows
to more than twice the leading-edge value by the end of the separation region. Recall
that in our formulation the perturbation amplitude obtained from the numerical
results is u/u∞. Therefore the amplitude we measure at any s location, is identical to
the receptivity coefficient, Ks . Thus based on this, the receptivity coefficient for the
separation bubble in this case is 1.77, which is more than twice that of KLE at this
angle (which is less than at the highest angle before separation), and approximately
60 % larger than the largest KLE, that occurred just prior to separation (see figure 7).
Note that this increase in amplitude occurs in a streamwise distance that is only
approximately 4 % of the TS wavelength (see table 2). This would suggest that it is
more representative of a receptivity site than a region of enhanced linear growth.

Past the reattachment point, the T-S amplitude again decreases exponentially until
the Branch I location is reached. However, the combination of a lack of exponential
decay in the separation zone, and the added growth of the T-S wave amplitude,
leads to two orders of magnitude larger T-S amplitudes by the Branch II location
compared to the conditions before separation. The differences in KII for α = 12◦ to
14◦ reflects the extent of the separation zone, which increases approximately linearly
with increasing angle of incidence in this range of angles.

Thus when the mean flow separates on this body, there become two sites
of receptivity: at the leading edge, and at the location of the separation zone.



Acoustic receptivity of boundary layer 399

Originally, we thought there could be the potential for an interaction (through
linear superposition) of waves originating at these two sites, that was similar to that
documented by Wanderley & Corke (2001) on the elliptic leading edge of a flat plate.
If this were to occur, we would expect to find a frequency selection mechanism in
which the waves originating from the two sites would linearly add or subtract based
on the number of T-S wavelengths between the two sites. However as table 2 indicates,
the distances between the leading edge and the separation zone are only a fraction
of a T-S wavelength, with the largest being only approximately λ/4. In addition, our
dimensionless frequency (σ = 230 × 10−6) is at the very top of the neutral curve, and
more amplified frequencies will have longer wavelengths making the percentage even
smaller. Therefore aside from differences in the linear amplification rates of the T-S
mode, we do not expect behaviour that is different from what was presented here for
other disturbance frequencies.

7. Conclusions
The spatial formulation used in this problem was successful in capturing the mean

flow separation at large angles of incidence, and its effect on the growth of discrete
T-S waves at the linear stability Branch II. For angles of attack before separation,
we found that the leading-edge receptivity coefficient, KLE, increased with angle
of incidence. The magnitude and change with angle of incidence increased as the
leading-edge radius decreased. This followed an increase in the pressure gradient
at the physical leading edge as the angle of attack increased. The magnitude of the
pressure gradient decreased with increasing leading-edge radius, which correlates with
the lower KLE in those cases. Normalizing the angle of incidence by the square-root
of the leading-edge Reynolds number gave a moderate amount of collapse of KLE

versus α for the range of conditions examined. At larger angles of incidence, a
separation zone formed that became a second site of receptivity to the free-stream
disturbance. For the smallest leading-edge radius examined corresponding to Re = 10,
and an angle that was 2◦ past where the flow first separated, the receptivity coefficient
of the separation zone was more than twice that of the leading edge. This led to
a T-S amplitude more than 100 times larger at the Branch II location (KII). The
receptivity coefficient of the separation zone increased with its streamwise extent,
which increased approximately linearly with angle of attack. The scenarios for the
other larger leading-edge (radii) Reynolds numbers are similar after accounting for
their respective leading-edge receptivity and location and extent of the separation
zone. Even with the largest Reynolds number, with the lowest KLE, the Branch II
amplitude of T-S waves at the angle where the flow first separated was almost four
orders of magnitude larger than those at zero angle of incidence. This emphasizes
the importance that aerodynamic loading and flow separation have on acoustic
receptivity, and therby on boundary-layer transition to turbulence.
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